Lambert's problem has been long studied in the context of space operations; its solution enables accurate orbit determination and spacecraft guidance. This work offers an analytical solution to Lambert's problem using the Koopman Operator (KO). In contrast to previous methods in the literature, the KO provides the analysis of a nonlinear system by seeking a transformation that embeds the nonlinear dynamics into a global linear representation. Our new methodology to solve for Lambert solutions considers the position of the system's eigenvalues on the phase plane, evaluating accurate state transition polynomial maps for a computationally efficient propagation of the dynamics. The methodology used and multiple-revolution solutions found are compared in accuracy and performance with other techniques found in the literature, highlighting the benefits of the newly developed analytical approach over classical numerical methodologies.
翻译:Lambert的问题在空间操作方面已经进行了长期研究;其解决办法有助于准确的轨道确定和航天器指导。这项工作用Koopman操作员(KO)对Lambert的问题提供了分析解决办法。与文献中以往的方法不同,KO通过寻求将非线性动态嵌入全球线性表示法的转变,对非线性系统进行了分析。我们为Lambert解决方案解决的新方法考虑了系统在相平面上的双元值位置,评估了准确的状态过渡多位图,以进行计算高效的动态传播。所使用的方法和发现的多重革命解决方案在准确性和性能方面与文献中发现的其他技术进行了比较,突出了新开发的分析方法对传统数字方法的好处。