Although recipe data are very easy to come by nowadays, it is really hard to find a complete recipe dataset - with a list of ingredients, nutrient values per ingredient, and per recipe, allergens, etc. Recipe datasets are usually collected from social media websites where users post and publish recipes. Usually written with little to no structure, using both standardized and non-standardized units of measurement. We collect six different recipe datasets, publicly available, in different formats, and some including data in different languages. Bringing all of these datasets to the needed format for applying a machine learning (ML) pipeline for nutrient prediction [1], [2], includes data normalization using dictionary-based named entity recognition (NER), rule-based NER, as well as conversions using external domain-specific resources. From the list of ingredients, domain-specific embeddings are created using the same embedding space for all recipes - one ingredient dataset is generated. The result from this normalization process is two corpora - one with predefined ingredient embeddings and one with predefined recipe embeddings. On all six recipe datasets, the ML pipeline is evaluated. The results from this use case also confirm that the embeddings merged using the domain heuristic yield better results than the baselines.
翻译:虽然食谱数据现在非常容易获得,但很难找到完整的食谱数据集 -- -- 包括成分清单、每种成分的营养值和每种配方、过敏等。 食谱数据集通常从用户张贴和出版食谱的社交媒体网站上收集,通常使用标准化和非标准化的测量单位,以很少或没有结构的形式编写。 我们收集了六套不同的食谱数据集, 以不同格式公开提供, 其中一些包括不同语言的数据。 将所有这些数据集带入所需的格式, 以应用机器学习(ML)管道进行营养预测[1, [2], 包括数据正常化, 使用基于字典命名的实体识别(NER)、 以规则为基础的 NER, 以及使用外部域别资源进行转换。 从成分清单中, 使用所有食谱的同一嵌入空间创建了特定域嵌入式数据集 - 生成了一个成份数据集。 正常化进程的结果是两个Corpoora - 一个含有预先定义的成分嵌入和一种预先定义的食谱嵌入式管道[1, [2], 包括使用基于所有六种配方配方名称的编码的数据, 也用合并式模型确认。 在所有六种配制中, ML 固存取中, 也使用了比合并的固存取中, 使用了比合并制成标的模型校基结果。