In this paper, we propose a nonlinear probabilistic generative model of Koopman mode decomposition based on an unsupervised Gaussian process. Existing data-driven methods for Koopman mode decomposition have focused on estimating the quantities specified by Koopman mode decomposition, namely, eigenvalues, eigenfunctions, and modes. Our model enables the simultaneous estimation of these quantities and latent variables governed by an unknown dynamical system. Furthermore, we introduce an efficient strategy to estimate the parameters of our model by low-rank approximations of covariance matrices. Applying the proposed model to both synthetic data and a real-world epidemiological dataset, we show that various analyses are available using the estimated parameters.
翻译:在本文中,我们提出一个非线性概率的Koopman 模式分解基因模型,该模型基于无人监督的Gaussian过程。现有的Koopman 模式分解数据驱动方法侧重于估计Koopman 模式分解规定的数量,即,eigenvalue、eigenforps和模式。我们的模型使得能够同时估计这些数量和受未知动态系统制约的潜在变量。此外,我们引入了一种有效的战略,通过低水平的变量矩阵近似来估计我们模型的参数。将拟议的模型应用于合成数据和真实世界流行病学数据集,我们显示使用估计参数可以进行各种分析。