From a continuous-time long memory stochastic process, a discrete-time randomly sampled one is drawn. We investigate the second-order properties of this process and establish some time-and frequency-domain asymptotic results. We mainly focus on the case when the initial process is Gaussian. The challenge being that, although marginally remains Gaussian, the randomly sampled process will no longer be jointly Gaussian.
翻译:从一个持续时间长的内存随机抽取过程抽取一个离散时间随机抽取的过程。 我们调查这个过程的第二阶属性, 并设定一些时间和频率域的无症状结果。 我们主要关注初始过程是高斯时的情况。 挑战在于, 尽管这个随机抽取的过程还略微停留在高斯时, 但这个随机抽取的过程将不再是共同的高斯进程 。