In this work, we investigate into the performance of mainstream neural generative models on the very task of swapping faces. We have experimented on CVAE, CGAN, CVAE-GAN, and conditioned diffusion models. Existing finely trained models have already managed to produce fake faces (Facke) indistinguishable to the naked eye as well as achieve high objective metrics. We perform a comparison among them and analyze their pros and cons. Furthermore, we proposed some promising tricks though they do not apply to this task.
翻译:在这项工作中,我们调查了主流神经基因模型在面部互换任务方面的表现。我们已经在CVAE、CGAN、CVAE-GAN和有条件的传播模型上进行了实验。 现有的训练有素的模型已经设法制作了无法与肉眼区分的假面孔(Facke),并取得了高客观的度量。我们对它们进行比较,分析它们的利弊。此外,我们提出了一些有希望的技巧,尽管它们并不适用于这项任务。