This paper shows the implementation of reinforcement learning (RL) in commercial flowsheet simulator software (Aspen Plus V12) for designing and optimising a distillation sequence. The aim of the SAC agent was to separate a hydrocarbon mixture in its individual components by utilising distillation. While doing so it tries to maximise the profit produced by the distillation sequence. All actions of the agent were set by the SAC agent in Python and communicated in Aspen Plus via an API. Here the distillation column was simulated by use of the build-in RADFRAC column. With this a connection was established for data transfer between Python and Aspen and the agent succeeded to show learning behaviour, while increasing profit. Although results were generated, the use of Aspen was slow (190 hours) and Aspen was found unsuitable for parallelisation. This makes that Aspen is incompatible for solving RL problems. Code and thesis are available at https://github.com/lollcat/Aspen-RL
翻译:本文展示了商业流程表模拟软件(Aspen Plus V12)中用于设计和优化蒸馏序列的强化学习(RL)在商业流程表模拟软件(Aspen Plus V12)中用于设计和优化蒸馏序列的强化学习(RL)实施情况。 SAC 代理器的目的是通过利用蒸馏法将碳氢化合物混合物的个别成分分离出来。 在这样做时,它试图最大限度地扩大蒸馏序列产生的利润。 代理器的所有动作都是由位于Python的SAC 代理器设置的,并通过一个 API 传输到 Aspen Plus Pl。 在这里, 蒸馏栏通过使用 RADFRAC 的构建栏进行模拟。 通过此连接, Python 和 Aspen 和 Aspen 代理器之间数据传输连接了数据, 从而在增加利润的同时成功地显示了学习行为 。 虽然产生了结果, 但Aspen 的使用缓慢( 190 小时), Aspen 和 Aspen 被发现不适于平行。 这就使得Aspen 无法解决 RL 问题。 。 。 代码和论文可在 https://github.com/lollcat/ Aspat/ Aspen- RLL.