This paper shows the implementation of reinforcement learning (RL) in commercial flowsheet simulator software (Aspen Plus V12) for designing and optimising a distillation sequence. The aim of the SAC agent was to separate a hydrocarbon mixture in its individual components by utilising distillation. While doing so it tries to maximise the profit produced by the distillation sequence. All actions of the agent were set by the SAC agent in Python and communicated in Aspen Plus via an API. Here the distillation column was simulated by use of the build-in RADFRAC column. With this a connection was established for data transfer between Python and Aspen and the agent succeeded to show learning behaviour, while increasing profit. Although results were generated, the use of Aspen was slow (190 hours) and Aspen was found unsuitable for parallelisation. This makes that Aspen is incompatible for solving RL problems. Code and thesis are available at https://github.com/lollcat/Aspen-RL


翻译:本文展示了商业流程表模拟软件(Aspen Plus V12)中用于设计和优化蒸馏序列的强化学习(RL)在商业流程表模拟软件(Aspen Plus V12)中用于设计和优化蒸馏序列的强化学习(RL)实施情况。 SAC 代理器的目的是通过利用蒸馏法将碳氢化合物混合物的个别成分分离出来。 在这样做时,它试图最大限度地扩大蒸馏序列产生的利润。 代理器的所有动作都是由位于Python的SAC 代理器设置的,并通过一个 API 传输到 Aspen Plus Pl。 在这里, 蒸馏栏通过使用 RADFRAC 的构建栏进行模拟。 通过此连接, Python 和 Aspen 和 Aspen 代理器之间数据传输连接了数据, 从而在增加利润的同时成功地显示了学习行为 。 虽然产生了结果, 但Aspen 的使用缓慢( 190 小时), Aspen 和 Aspen 被发现不适于平行。 这就使得Aspen 无法解决 RL 问题。 。 。 代码和论文可在 https://github.com/lollcat/ Aspat/ Aspen- RLL.

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2021年12月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
17+阅读 · 2019年3月28日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员