We study the Consensus problem among $n$ agents, defined as follows. Initially, each agent holds one of two possible opinions. The goal is to reach a consensus configuration in which every agent shares the same opinion. To this end, agents randomly sample other agents and update their opinion according to a simple update function depending on the sampled opinions. We consider two communication models: the gossip model and a variant of the population model. In the gossip model, agents are activated in parallel, synchronous rounds. In the population model, one agent is activated after the other in a sequence of discrete time steps. For both models we analyze the following natural family of majority processes called $j$-Majority: when activated, every agent samples $j$ other agents uniformly at random (with replacement) and adopts the majority opinion among the sample (breaking ties uniformly at random). As our main result we show a hierarchy among majority protocols: $(j+1)$-Majority (for $j > 1$) converges stochastically faster than $j$-Majority for any initial opinion configuration. In our analysis we use Strassen's Theorem to prove the existence of a coupling. This gives an affirmative answer for the case of two opinions to an open question asked by Berenbrink et al. [2017].
翻译:我们研究的是美元代理商之间的共识问题,定义如下:最初,每个代理商持有两种可能的意见之一。目标是达成一种共识配置,每个代理商都持有相同的意见。为此,代理商随机抽样其他代理商,并根据抽样意见的简单更新功能更新其意见。我们考虑两种沟通模式:八卦模式和人口模式的变式。在八卦模式中,代理商以平行、同步的回合方式启动。在人口模式中,一个代理商在分时间步骤的顺序上接连启动。对于两种模式,我们分析的是大多数过程的以下自然家庭,即Maj$-Majority:当激活时,每个代理商均以随机(替换)的方式对其他代理商进行美元样本进行随机抽样抽样,并采用多数意见(随机地打破联系)。我们的主要结果是多数协议之间的等级:$(j+1)$-Majority($ > 1美元)在结构上比美元-Majority更快速地结合。对于两种类型的初始意见配置,我们用Strasen 和Bebrequest 问题来验证一个肯定性问题。我们用S-20的答案来证明一个案例。