The paper describes the usage of intelligent approaches for field development tasks that may assist a decision-making process. We focused on the problem of wells location optimization and two tasks within it: improving the quality of oil production estimation and estimation of reservoir characteristics for appropriate wells allocation and parametrization, using machine learning methods. For oil production estimation, we implemented and investigated the quality of forecasting models: physics-based, pure data-driven, and hybrid one. The CRMIP model was chosen as a physics-based approach. We compare it with the machine learning and hybrid methods in a frame of oil production forecasting task. In the investigation of reservoir characteristics for wells location choice, we automated the seismic analysis using evolutionary identification of convolutional neural network for the reservoir detection. The Volve oil field dataset was used as a case study to conduct the experiments. The implemented approaches can be used to analyze different oil fields or adapted to similar physics-related problems.


翻译:论文介绍了对可能有助于决策过程的实地发展任务的智能方法的使用情况。我们着重讨论了井的位置优化问题和其中的两项任务:利用机器学习方法,提高石油生产估计质量和储油层特性的估计,以便进行适当的井分配和对称;关于石油生产估计,我们实施并调查了预测模型的质量:物理模型、纯数据驱动模型和混合模型。CRMIP模型是作为物理学方法选择的。我们将其与石油生产预测任务框架中的机器学习和混合方法进行比较。在对井位置选择的储油层特性的调查中,我们利用对脉冲神经网络的进化识别进行地震分析,以探测储油层。流动油田数据集被用作进行实验的案例研究。实施的方法可用于分析不同的油田或适应类似的物理相关问题。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
Arxiv
0+阅读 · 2021年4月23日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员