Any-to-any voice conversion problem aims to convert voices for source and target speakers, which are out of the training data. Previous works wildly utilize the disentangle-based models. The disentangle-based model assumes the speech consists of content and speaker style information and aims to untangle them to change the style information for conversion. Previous works focus on reducing the dimension of speech to get the content information. But the size is hard to determine to lead to the untangle overlapping problem. We propose the Disentangled Representation Voice Conversion (DRVC) model to address the issue. DRVC model is an end-to-end self-supervised model consisting of the content encoder, timbre encoder, and generator. Instead of the previous work for reducing speech size to get content, we propose a cycle for restricting the disentanglement by the Cycle Reconstruct Loss and Same Loss. The experiments show there is an improvement for converted speech on quality and voice similarity.
翻译:任何语音转换问题都旨在将声音转换为源词和标音器, 后者来自培训数据。 先前的作品疯狂地利用了以分解为基础的模型。 基于分解模式的模型假定了该语音包括内容和发言者风格信息, 目的是解开它们以改变转换信息的风格。 以前的工作重点是减少语音的维度, 以获得内容信息。 但是, 大小很难决定如何导致解开的重叠问题 。 我们建议使用分解的代言声音转换( DRVC) 模型来解决这个问题 。 DRVC 模型是一个由内容编码器、 Timbre 编码器和生成器组成的端到端自我监督模型 。 我们建议用一个循环的循环来限制语言脱钩, 以获得内容信息 。 我们的实验显示, 在质量和声音相似性上转换的语音会有所改进 。