In probabilistic modelling, joint distributions are often of more interest than their marginals, but the standard composition of stochastic channels is defined by marginalization. Recently, the notion of 'copy-composition' was introduced in order to circumvent this problem and express the chain rule of the relative entropy fibrationally, but while that goal was achieved, copy-composition lacked a satisfactory origin story. Here, we supply such a story for two standard probabilistic tools: directed and undirected graphical models. We explain that (directed) Bayesian networks may be understood as "stochastic terms" of product type, in which context copy-composition amounts to a pull-push operation. Likewise, we show that (undirected) factor graphs compose by copy-composition. In each case, our construction yields a double fibration of decorated (co)spans. Along the way, we introduce a useful bifibration of measure kernels, to provide semantics for the notion of stochastic term, which allows us to generalize probabilistic modelling from product to dependent types.
翻译:暂无翻译