Topology matters. Despite the recent success of point cloud processing with geometric deep learning, it remains arduous to capture the complex topologies of point cloud data with a learning model. Given a point cloud dataset containing objects with various genera, or scenes with multiple objects, we propose an autoencoder, TearingNet, which tackles the challenging task of representing the point clouds using a fixed-length descriptor. Unlike existing works directly deforming predefined primitives of genus zero (e.g., a 2D square patch) to an object-level point cloud, our TearingNet is characterized by a proposed Tearing network module and a Folding network module interacting with each other iteratively. Particularly, the Tearing network module learns the point cloud topology explicitly. By breaking the edges of a primitive graph, it tears the graph into patches or with holes to emulate the topology of a target point cloud, leading to faithful reconstructions. Experimentation shows the superiority of our proposal in terms of reconstructing point clouds as well as generating more topology-friendly representations than benchmarks.
翻译:地形事项。 尽管最近以几何深学习的方式成功地进行了点云处理, 但仍很难用学习模型来捕捉点云数据的复杂地形。 鉴于一个点云数据集包含不同基因的物体, 或多物体的场景, 我们提议建立一个自动编码器, 名为“ 催泪网 ”, 解决使用固定长度的描述符代表点云的艰巨任务。 与现有的工作不同, 我们的催泪网的特点是一个拟议的撕裂网络模块和折叠网络模块相互互动。 特别是, 撕裂网络模块明确学习点云表学。 通过打破原始图的边缘, 将图撕碎成块状, 或用洞孔来模仿目标点云的表面学, 导致忠实的重建。 实验表明,我们提案的优势在于重建点云, 以及产生比基准更有利于表情的图象。