The paper proposes a natural measure space of zero-sum perfect information games with upper semicontinuous payoffs. Each game is specified by the game tree, and by the assignment of the active player and of the capacity to each node of the tree. The payoff in a game is defined as the infimum of the capacity over the nodes that have been visited during the play. The active player, the number of children, and the capacity are drawn from a given joint distribution independently across the nodes. We characterize the cumulative distribution function of the value $v$ using the fixed points of the so-called value generating function. The characterization leads to a necessary and sufficient condition for the event $v \geq k$ to occur with positive probability. We also study probabilistic properties of the set of Player I's $k$-optimal strategies and the corresponding plays.
翻译:本文提出一个自然测量空间, 即零和完美信息游戏的自然测量空间, 有上半连续的回报。 每场游戏由游戏树和指定活动玩家和树上每个节点的能力来指定。 游戏中的回报被定义为游戏中所访问节点的最小容量。 活动玩家、 子女数目和容量独立地从节点之间的一个指定的联合分布中提取。 我们使用所谓的价值生成功能的固定点来描述价值$v的累积分布功能。 定性为事件以正概率发生的必要和充分条件 $v\geq k$。 我们还研究玩家I $k$- 最佳策略和相应游戏的概率特性 。