Quality diversity (QD) is a growing branch of stochastic optimization research that studies the problem of generating an archive of solutions that maximize a given objective function but are also diverse with respect to a set of specified measure functions. However, even when these functions are differentiable, QD algorithms treat them as "black boxes", ignoring gradient information. We present the differentiable quality diversity (DQD) problem, a special case of QD, where both the objective and measure functions are first order differentiable. We then present MAP-Elites via Gradient Arborescence (MEGA), a DQD algorithm that leverages gradient information to efficiently explore the joint range of the objective and measure functions. Results in two QD benchmark domains and in searching the latent space of a StyleGAN show that MEGA significantly outperforms state-of-the-art QD algorithms, highlighting DQD's promise for efficient quality diversity optimization when gradient information is available. Source code is available at https://github.com/icaros-usc/dqd.
翻译:质量多样性(QD)是质量优化研究的一个日益增长的分支,它研究生成一个解决方案档案的问题,这些解决方案的档案能够最大限度地实现一个特定的目标功能,但对于一套特定的计量功能而言,也各不相同。然而,即使这些功能是不同的,QD算法将它们视为“黑盒子”,忽视梯度信息。我们提出了质量多样性(DQD)问题,QD是一个特殊的例子,其目标和测量功能都首先可以区分。我们然后通过梯度振荡法(MEGA)介绍MAP-Elites,这是一种DQD算法,利用梯度信息有效探索目标和计量功能的联合范围。两个QD基准域和StyleGAN探索潜在空间的结果显示,MEGA大大优于“最先进的”QD算法,突出了DQD在可获得梯度信息时对高效质量多样性优化的承诺。源码见https://github.com/icaros-usc/dqd。