We prove that any compact semi-algebraic set is homeomorphic to the solution space of some art gallery problem. Previous works have established similar universality theorems, but holding only up to homotopy equivalence, rather than homeomorphism, and prior to this work, the existence of art galleries even for simple spaces such as the M\"obius strip or the three-holed torus were unknown. Our construction relies on an elegant and versatile gadget to copy guard positions with minimal overhead, and is thus simpler than previous constructions, consisting of a single rectangular room with convex slits cut out from the edges. We additionally show that both the orientable and non-orientable surfaces of genus $n$ require galleries with only $O(n)$ vertices.
翻译:我们证明,任何紧凑的半地球镜组对于解决美术馆问题的空间都是自成一体的。 以前的作品已经确立了类似的普遍性理论,但只保持同质等同,而不是自成一体,在这项工作之前,艺术画廊的存在甚至对于诸如M\'bius条或三孔托盘等简单空间来说都是未知的。 我们的建筑依靠一个优雅和多才多艺的装置来复制警卫位置,其顶部最小,因此比以前的建筑简单得多,它包括一个单长方形房间,有从边缘切开的螺旋切线。 我们还表明,只要O(n)$(n)的脊椎,就需要有可定向和不可调整的外形表面。