In this work, we propose a multigrid preconditioner for Jacobian-free Newton-Krylov (JFNK) methods. Our multigrid method does not require knowledge of the Jacobian at any level of the multigrid hierarchy. As it is common in standard multigrid methods, the proposed method also relies on three building blocks: transfer operators, smoothers, and a coarse level solver. In addition to the restriction and prolongation operator, we also use a projection operator to transfer the current Newton iterate to a coarser level. The three-level Chebyshev semi-iterative method is employed as a smoother, as it has good smoothing properties and does not require the representation of the Jacobian matrix. We replace the direct solver on the coarsest level with a matrix-free Krylov subspace method, thus giving rise to a truly Jacobian-free multigrid preconditioner. We will discuss all building blocks of our multigrid preconditioner in detail and demonstrate the robustness and the efficiency of the proposed method using several numerical examples.
翻译:在这项工作中,我们为无Jacobian Newton-Krylov (JFNK) 方法提出了一个多格化的先决条件。 我们的多格化方法不需要在多格化等级的任何级别上了解Jacobian。 由于在标准的多格化方法中很常见, 拟议的方法还依赖于三个构件: 传输操作员、 平滑器和一个粗糙的平滑器。 除了限制和延长操作员之外, 我们还使用投影操作员将当前的牛顿转接器转换到一个粗略的级别。 3级的Chebyshev 半平滑法被作为一种平滑法使用, 因为它具有良好的平滑性, 不需要 Jacobian 矩阵的表示 。 我们用一个没有矩阵的 Krylov 子空间方法取代粗略层次的直接求解决器, 从而产生一个真正无Jacobian 的多格化的预设件。 我们将使用几个数字例子详细讨论我们多格化前置装置的所有构件, 并展示拟议方法的坚固性和效率。