Parameterized complexity seeks to use input structure to obtain faster algorithms for NP-hard problems. This has been most successful for graphs of low treewidth: Many problems admit fast algorithms relative to treewidth and many of them are optimal under SETH. Fewer such results are known for more general structure such as low clique-width and more restrictive structure such as low deletion distance to a sparse graph class. Despite these successes, such results remain "islands'' within the realm of possible structure. Rather than adding more islands, we seek to determine the transitions between them, that is, we aim for structural thresholds where the complexity increases as input structure becomes more general. Going from deletion distance to treewidth, is a single deletion set to a graph with simple components enough to yield the same lower bound as for treewidth or does it take many disjoint separators? Going from treewidth to clique-width, how much more density entails the same complexity as clique-width? Conversely, what is the most restrictive structure that yields the same lower bound? For treewidth, we obtain both refined and new lower bounds that apply already to graphs with a single separator $X$ such that $G-X$ has treewidth $r=O(1)$, while $G$ has treewidth $|X|+O(1)$. We rule out algorithms running in time $O^*((r+1-\epsilon)^{k})$ for Deletion to $r$-Colorable parameterized by $k=|X|$. For clique-width, we rule out time $O^*((2^r-\epsilon)^k)$ for Deletion to $r$-Colorable, where $X$ is now allowed to consist of $k$ twinclasses. There are further results on Vertex Cover, Dominating Set and Maximum Cut. All lower bounds are matched by existing and newly designed algorithms.
翻译:参数化复杂度试图使用输入结构来为NP- 硬问题获取更快的算法。 这在低树枝图中最为成功 : 许多问题都承认树枝的快速算法, 其中许多在Seth 下是最佳的 。 在更普通的结构中, 诸如低 cloique- width 和更具限制性的结构, 比如低删除距离到稀薄的图形类 。 尽管取得了这些成功, 但这些结果仍然是“ 岛屿” 在可能的结构范围内。 我们不是增加更多的岛屿, 而是要确定它们之间的过渡, 也就是说, 我们的目标是结构阈值增加的结构阈值。 从删除距离到树枝节, 这是一套简单的删除的设置, 足以产生与树枝节值相同的较低约束值, 或者说, 从树枝节到 $ 美元, 现在的密度, 更低的密度和 美元