This paper addresses weakly supervised amodal instance segmentation, where the goal is to segment both visible and occluded (amodal) object parts, while training provides only ground-truth visible (modal) segmentations. Following prior work, we use data manipulation to generate occlusions in training images and thus train a segmenter to predict amodal segmentations of the manipulated data. The resulting predictions on training images are taken as the pseudo-ground truth for the standard training of Mask-RCNN, which we use for amodal instance segmentation of test images. For generating the pseudo-ground truth, we specify a new Amodal Segmenter based on Boundary Uncertainty estimation (ASBU) and make two contributions. First, while prior work uses the occluder's mask, our ASBU uses the occlusion boundary as input. Second, ASBU estimates an uncertainty map of the prediction. The estimated uncertainty regularizes learning such that lower segmentation loss is incurred on regions with high uncertainty. ASBU achieves significant performance improvement relative to the state of the art on the COCOA and KINS datasets in three tasks: amodal instance segmentation, amodal completion, and ordering recovery.
翻译:本文涉及受微弱监督的模拟分解, 目标是分解可见和隐蔽( modal) 对象部分, 而培训只提供地面真实可见( modal) 分解。 在此前的工作之后, 我们使用数据操纵来生成培训图像中的分解, 从而培训一个分解器来预测被操纵数据的偏移分解。 由此对培训图像的预测被作为Mask- RCNNN 标准培训的假地面真象, 用于测试图像的偏移( modal) 分解 。 为了生成假地面事实, 我们指定了一个新的基于边界不确定性估计( ASBU) 并做出两项贡献 。 首先, 我们使用先前的工作使用 occluder 遮盖, 我们的ASBU 使用隐蔽界线作为输入 。 第二, ASBU 估计了预测的不确定性图。 估计不确定性使了解在高度不确定的区域发生的分解损失程度较低的情况趋于正常。 ABU 相对于COA 和 KINSD 恢复 三个任务中 的艺术状态: 完成 。