The distances between words calculated in word units are studied and compared with the distributions of the Random Matrix Theory (RMT). It is found that the distribution of distance between the same words can be well described by the single-parameter Brody distribution. Using the Brody distribution fit, we found that the distance between given words in a set of texts can show mixed dynamics, coexisting regular and chaotic regimes. It is found that distributions correctly fitted by the Brody distribution with a certain goodness of the fit threshold can be identifid as stop words, usually considered as the uninformative part of the text. By applying various threshold values for the goodness of fit, we can extract uninformative words from the texts under analysis to the desired extent. On this basis we formulate a fully agnostic recipe that can be used in the creation of a customized set of stop words for texts in any language based on words.


翻译:对用文字单位计算的单词之间的距离进行了研究,并与随机矩阵理论(RMT)的分布进行比较。 发现同一词之间的距离分布可以通过单一参数Brody分布来很好地描述。 使用Brody分布的合适方法,我们发现一组文本中给定的单词之间的距离可以显示混杂的动态, 并同时存在常规和混乱的制度。 人们发现, Brody 分布的正确配齐的适合阈值的分布可以被识别为句式词, 通常被视为文本中不具有信息规范的部分。 通过应用各种临界值, 我们就可以从所分析的文本中提取非信息化的单词, 从而达到预期的程度。 在此基础上, 我们制定了一种完全不可知的配方, 可以用来为基于文字的任何语言的文本创建一套定制的断字。

0
下载
关闭预览

相关内容

随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。
专知会员服务
41+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员