Assortativity measures the tendency of a vertex in a network being connected by other vertexes with respect to some vertex-specific features. Classical assortativity coefficients are defined for unweighted and undirected networks with respect to vertex degree. We propose a class of assortativity coefficients that capture the assortative characteristics and structure of weighted and directed networks more precisely. The vertex-to-vertex strength correlation is used as an example, but the proposed measure can be applied to any pair of vertex-specific features. The effectiveness of the proposed measure is assessed through extensive simulations based on prevalent random network models in comparison with existing assortativity measures. In application World Input-Ouput Networks,the new measures reveal interesting insights that would not be obtained by using existing ones. An implementation is publicly available in a R package "wdnet".


翻译:分布度测量一个网络中由其他顶端连接的顶点与某些顶点特征相连接的趋势。 在顶点程度方面,为无加权和无定向网络界定了典型的分类系数。我们建议了一组反映加权和定向网络的分类特征和结构的分类系数。将顶点对顶点强度的相对关系作为例子使用,但拟议的措施可以适用于任何一对顶点特征。拟议措施的有效性是通过广泛模拟来评估的,其依据是普遍的随机网络模型,与现有的类点度措施相比。在应用世界输入-Ouput网络中,新措施揭示了有趣的洞察力,而利用现有的套件是无法获得的。R软件“wdnet”中可公开提供实施。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员