Hypervolume contribution is an important concept in evolutionary multi-objective optimization (EMO). It involves in hypervolume-based EMO algorithms and hypervolume subset selection algorithms. Its main drawback is that it is computationally expensive in high-dimensional spaces, which limits its applicability to many-objective optimization. Recently, an R2 indicator variant (i.e., $R_2^{\text{HVC}}$ indicator) is proposed to approximate the hypervolume contribution. The $R_2^{\text{HVC}}$ indicator uses line segments along a number of direction vectors for hypervolume contribution approximation. It has been shown that different direction vector sets lead to different approximation quality. In this paper, we propose \textit{Learning to Approximate (LtA)}, a direction vector set generation method for the $R_2^{\text{HVC}}$ indicator. The direction vector set is automatically learned from training data. The learned direction vector set can then be used in the $R_2^{\text{HVC}}$ indicator to improve its approximation quality. The usefulness of the proposed LtA method is examined by comparing it with other commonly-used direction vector set generation methods for the $R_2^{\text{HVC}}$ indicator. Experimental results suggest the superiority of LtA over the other methods for generating high quality direction vector sets.
翻译:超容量贡献是进化多目标优化(EMO)中的一个重要概念。 它涉及超容量的 EMO 算法和超容量子集选择算法。 它的主要缺点是, 它在高维空间计算成本昂贵, 限制了对多种目标优化的适用性。 最近, 提出了一个 R2 指标变量( 即 $_2 ⁇ text{ HVC+$ 指标) 以接近超容量贡献值。 $_ 2 ⁇ text{ HVC+$ 指标使用线条段, 沿着一些方向矢量转换为超量贡献近似。 已经显示, 不同的向量矢量设置导致不同的近似质量。 在本文件中, 我们提议 \ textit{ 学习到 Aplight (LtA)}, 用于 $R_ 2 ⁇ text{ HVC+$ 指标的向导生成方法。 从培训数据中自动学习方向矢量数据集。 学习的方向矢量集可以用于 $_ 2 ⁇ { HV ⁇ { { $ 美元的指标, 以提高近似质量。 。 拟议的 LtA 方法的效用是通过将LtA 质量 方法与LtA 生成高矢量生成指标的向其它方向进行比较。 。 。 。 。