Various model-based diagnosis scenarios require the computation of the most preferred fault explanations. Existing algorithms that are sound (i.e., output only actual fault explanations) and complete (i.e., can return all explanations), however, require exponential space to achieve this task. As a remedy, to enable successful diagnosis on memory-restricted devices and for memory-intensive problem cases, we propose RBF-HS, a diagnostic search method based on Korf's well-known RBFS algorithm. RBF-HS can enumerate an arbitrary fixed number of fault explanations in best-first order within linear space bounds, without sacrificing the desirable soundness or completeness properties. Evaluations using real-world diagnosis cases show that RBF-HS, when used to compute minimum-cardinality fault explanations, in most cases saves substantial space (up to 98 %) while requiring only reasonably more or even less time than Reiter's HS-Tree, a commonly used and as generally applicable sound, complete and best-first diagnosis search.
翻译:各种基于模型的诊断方案都需要计算出最可取的错误解释。现有的算法是健全的(即产出只有实际的错误解释)和完整的(即可以返回所有解释),但需要指数空间才能完成这项任务。作为一种补救措施,为了能够成功诊断记忆限制装置和记忆密集的问题案例,我们建议使用基于Korf众所周知的RBFFS算法的诊断性搜索方法RBF-HS。RBF-HS可以以线性空间范围内的最佳顺序列出任意固定的错误解释数目,而不必牺牲理想的正确性或完整性特性。 使用现实世界的诊断案例的评估表明,RBF-HS在用来计算最小的心错解释时,在大多数情况下可以节省大量空间(高达98%),同时只合理需要比Reter的HS-Tree需要更多甚至更少的时间,这是通常使用和普遍适用的正确、完整和最佳的诊断性搜索。