We study the Human Activity Recognition (HAR) task, which predicts user daily activity based on time series data from wearable sensors. Recently, researchers use end-to-end Artificial Neural Networks (ANNs) to extract the features and perform classification in HAR. However, ANNs pose a huge computation burden on wearable devices and lack temporal feature extraction. In this work, we leverage Spiking Neural Networks (SNNs)--an architecture inspired by biological neurons--to HAR tasks. SNNs allow spatio-temporal extraction of features and enjoy low-power computation with binary spikes. We conduct extensive experiments on three HAR datasets with SNNs, demonstrating that SNNs are on par with ANNs in terms of accuracy while reducing up to 94% energy consumption. The code is publicly available in https://github.com/Intelligent-Computing-Lab-Yale/SNN_HAR
翻译:我们研究人类活动识别(HAR)任务,该任务根据来自可磨损传感器的时间序列数据预测用户每天的活动。最近,研究人员利用端到端人工神经网络(ANNs)来提取功能并在HAR进行分类。然而,ANNes对可磨损装置造成巨大的计算负担,缺乏时间特征提取。在这项工作中,我们利用Spiking神经网络(SNNs)-一个由生物神经元-HAR任务启发的架构。SNNs允许对特征进行瞬时提取,并享受二元钉低功率的计算。我们就与SNNS的3个HAR数据集进行了广泛的实验,表明SNNS在准确性方面与ANs持平,同时将能源消耗减少到94%。该代码公布在https://github.com/Intelligent-Computing-Lab-Yale/SNNN_HAR上。