Nonholonomic control is a candidate to control nonlinear systems with path-dependant states. We investigate an underactuated flying micro-aerial-vehicle, the ionocraft, that requires nonholonomic control in the yaw-direction for complete attitude control. Deploying an analytical control law involves substantial engineering design and is sensitive to inaccuracy in the system model. With specific assumptions on assembly and system dynamics, we derive a Lie bracket for yaw control of the ionocraft. As a comparison to the significant engineering effort required for an analytic control law, we implement a data-driven model-based reinforcement learning yaw controller in a simulated flight task. We demonstrate that a simple model-based reinforcement learning framework can match the derived Lie bracket control (in yaw rate and chosen actions) in a few minutes of flight data, without a pre-defined dynamics function. This paper shows that learning-based approaches are useful as a tool for synthesis of nonlinear control laws previously only addressable through expert-based design.
翻译:非血压控制是控制具有路径依赖状态的非线性系统的一个候选。 我们调查了一种未充分激活的飞行微型飞行器,即电离飞行器,它需要在亚线方向上进行非热层控制以完全姿态控制。 部署一种分析控制法需要大量的工程设计,并且对系统模型的不准确性敏感。 在对组装和系统动态的具体假设下, 我们得出了一个对离子体的亚线控制。 作为与分析控制法所需的重大工程努力的比较, 我们在模拟飞行任务中执行一种基于数据驱动的模型强化学习电线控制器。 我们证明一个基于简单模型的强化学习框架可以在飞行数据数分钟内匹配衍生的列列控(亚线率和选定动作), 没有预先定义的动态功能。 该文件显示, 学习法是有用的工具, 用于合成先前只能通过专家设计处理的非线性控制法。