Outlier explanation is the task of identifying a set of features that distinguish a sample from normal data, which is important for downstream (human) decision-making. Existing methods are based on beam search in the space of feature subsets. They quickly becomes computationally expensive, as they require to run an outlier detection algorithm from scratch for each feature subset. To alleviate this problem, we propose a novel outlier explanation algorithm based on Sum-Product Networks (SPNs), a class of probabilistic circuits. Our approach leverages the tractability of marginal inference in SPNs to compute outlier scores in feature subsets. By using SPNs, it becomes feasible to perform backwards elimination instead of the usual forward beam search, which is less susceptible to missing relevant features in an explanation, especially when the number of features is large. We empirically show that our approach achieves state-of-the-art results for outlier explanation, outperforming recent search-based as well as deep learning-based explanation methods


翻译:外部解释是确定一系列特征的任务,将样本与正常数据区别开来,这对下游(人)决策十分重要。现有方法基于对地物子集空间的光束搜索。它们很快变得计算成本高昂,因为每个特性子集都需要从头开始运行一个超前检测算法。为了缓解这一问题,我们提议了一个新的基于总产值网络(SPNs)的外部解释算法,这是一个概率性电路的类别。我们的方法利用了SPNs中边际推断的可移动性来计算特征子集的中分。通过使用SPNs,可以进行后向消除,而不是通常的远方波段搜索,因为通常的远方搜索不太容易在解释中遗漏相关特征,特别是在特征数量很大的情况下。我们的经验表明,我们的方法在外部解释方面达到了最先进的结果,超过了最近的搜索和深入的学习解释方法。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员