We address the problem of image color quantization using a Maximum Entropy based approach. Focusing on pixel mapping we argue that adding thermal noise to the system yields better visual impressions than that obtained from a simple energy minimization. To quantify this observation, we introduce the coarse-grained quantization error, and seek the optimal temperature which minimizes this new observable. By comparing images with different structural properties, we show that the optimal temperature is a good proxy for complexity at different scales. Finally, noting that the convoluted error is a key observable, we directly minimize it using a Monte Carlo algorithm to generate a new series of quantized images. Adopting an original approach based on the informativity of finite size samples, we are able to determine the optimal convolution parameter leading to the best visuals.
翻译:我们使用以最大英特罗比为基础的方法来解决图像颜色量化问题。 聚焦于像素映射, 我们争论说, 在系统中添加热噪音会给人留下更好的视觉印象, 而不是从简单的能量最小化中获得的视觉印象。 为了量化这一观察, 我们引入了粗微微量化错误, 并寻求最佳温度, 将这一新可见度最小化。 通过将图像与不同的结构属性进行比较, 我们显示, 最佳温度是不同规模复杂度的好替代物 。 最后, 我们注意到, 熔化的错误是一个关键可见性, 我们直接将它降到最低, 使用蒙特卡洛算法来生成一系列新的量化图像 。 我们采用了基于有限尺寸样本的不格式化的原始方法, 我们能够确定导致最佳视觉的最佳演化参数 。