We study the problem of PAC learning a single neuron in the presence of Massart noise. Specifically, for a known activation function $f: \mathbb{R} \to \mathbb{R}$, the learner is given access to labeled examples $(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R}$, where the marginal distribution of $\mathbf{x}$ is arbitrary and the corresponding label $y$ is a Massart corruption of $f(\langle \mathbf{w}, \mathbf{x} \rangle)$. The goal of the learner is to output a hypothesis $h: \mathbb{R}^d \to \mathbb{R}$ with small squared loss. For a range of activation functions, including ReLUs, we establish super-polynomial Statistical Query (SQ) lower bounds for this learning problem. In more detail, we prove that no efficient SQ algorithm can approximate the optimal error within any constant factor. Our main technical contribution is a novel SQ-hard construction for learning $\{ \pm 1\}$-weight Massart halfspaces on the Boolean hypercube that is interesting on its own right.
翻译:我们研究PAC在 Massart 噪音面前学习单一神经元的问题。 具体地说, 对于已知的激活功能 $f :\ mathbb{R}\ to\ mathbb{ x}R $, y) 学习者可以访问标签示例 $( mathbb{R ⁇ d\ time\ mathbb{R} $, 其中$\ mathbf{x} 的边际分布是任意的, 相应的标签 $y$ 是 $f( langle\ mathbb{R}) 的 Massart 腐败。 具体地说, 学习者的目标是输出一个假设 $h:\ mathb{ R ⁇ d\ to\ mathb{rb{R}$, 其中损失小方块。 对于包括 ReLUs在内的激活功能范围, 我们建立了超极极极统计 Query (SQ) 下调 $( massarty) 。 在最精确的 massalimalimal QQal 中, 我们证明它最高效的学习因素是无法 。