机器学习已经成为近年来最流行的话题之一。我们今天看到的机器学习的应用只是冰山一角。机器学习革命才刚刚开始。它正在成为所有现代电子设备不可分割的一部分。在自动化领域的应用,如汽车、安全和监视、增强现实、智能家居、零售自动化和医疗保健,还不多。机器人技术也正在崛起,主宰自动化世界。机器学习在机器人领域的未来应用仍未被普通读者发现。因此,我们正在努力编写这本关于机器学习在机器人技术上的未来应用的编辑书籍,其中几个应用已经包含在单独的章节中。这本书的内容是技术性的。它试图覆盖机器学习的所有可能的应用领域。这本书将提供未来的愿景在未探索的领域的应用机器人使用机器学习。本书中提出的观点得到了原始研究结果的支持。本章在这里提供了所有必要的理论和数学计算的深入研究。对于外行人和开发人员来说,它将是完美的,因为它将结合高级材料和介绍性材料,形成一个论点,说明机器学习在未来可以实现什么。它将详细介绍未来的应用领域及其方法。因此,本书将极大地有利于学术界、研究人员和行业项目管理者开发他们的新项目,从而造福人类。

https://link.springer.com/book/10.1007/978-981-16-0598-7#about

成为VIP会员查看完整内容
0
25

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

图像分类、目标检测与跟踪、姿态估计、人脸识别和情感估计在解决计算机视觉问题中都起着重要的作用。

本书将重点介绍这些和其他深度学习架构和技术,以帮助您创建使用Keras和TensorFlow库的解决方案。您还将回顾多种神经网络架构,包括LeNet、AlexNet、VGG、Inception、R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、YOLO和SqueezeNet,并通过最佳实践、技巧、捷径和陷阱了解它们如何与Python代码一起工作。所有代码片段都将被分解并进行详细讨论,以便您可以在各自的环境中实现相同的原则。

使用深度学习的计算机视觉提供了一个全面而简洁的指南,将DL和CV结合在一起,实现自动化操作,减少人工干预,提高能力,并降低成本。

你会:

  • 掌握深度学习的代码和概念,将指导原则应用到您自己的项目中
  • 对各种体系结构进行分类和评估,以更好地理解您在各种用例中的选择
  • 深入基本深度学习功能,找出它们是如何工作的。

不久前,计算机视觉还只是科幻小说的专属内容,但现在,即使不是在整个社会,也正迅速成为各行各业的普遍现象。人类视觉是人类感官中最珍贵的一种,在模仿人类视觉这一领域取得的进展令人惊叹。直到1957年,拉塞尔·基尔希才扫描出了世界上第一张照片——他儿子的黑白照片。到20世纪80年代末,西罗维奇和柯比的工作帮助人脸识别成为一种可行的生物识别技术。尽管存在隐私问题和法律挑战,但Facebook在2010年将人脸识别技术纳入其社交媒体平台时,使这项技术无处不在。

这本书试图解释计算机视觉问题的深度学习和神经网络的概念。我们正在详细研究卷积神经网络,以及它们的各个组成部分和属性。我们正在探索各种神经网络架构,如LeNet, AlexNet, VGG, R-CNN, Fast R-CNN, Faster R-CNN, SSD, YOLO, ResNet, Inception, DeepFace,和FaceNet的细节。我们还在开发实用的解决方案,以解决二值图像分类、多类图像分类、目标检测、人脸识别和视频分析的用例。我们将使用Python和Keras作为解决方案。所有的代码和数据集被检入GitHub repo快速访问。在最后一章中,我们将学习深度学习项目中的所有步骤——从定义业务问题到部署。我们还在处理在制定解决方案时面临的重大错误和问题。在这本书中,我们提供了训练更好的算法的技巧和技巧,减少训练时间,监测结果,并改进解决方案。我们也分享代表性的研究论文和数据集,你应该使用它们来获得进一步的知识。

这本书把这个主题分成三部分。在第1章到第4章,本书描述了神经网络的本质和揭秘他们如何学习。并指出了不同的架构及其历史意义。实践者在拥有所有所需资源的情况下,可以体验到LeNet优雅的简单性、AlexNet提高的效率以及流行的VGG Net。在第5至7章,从业人员运用简单而强大的计算机视觉应用,如训练算法来检测物体和识别人脸。在进行视频分析时,我们遇到了渐变消失和爆炸的困扰问题,以及如何在ResNet架构中使用跳过连接来克服它。最后,在第8章中,我们回顾了完整的模型开发过程,从正确定义的业务问题开始,系统地推进,直到模型在生产环境中部署和维护。

成为VIP会员查看完整内容
0
61

近年来,自然语言处理的研究方法取得了一些突破。这些突破来源于两个新的建模框架以及在计算和词汇资源的可用性的改进。在这个研讨会小册子中,我们将回顾这些框架,以一种可以被视为现代自然语言处理开端的方法论开始:词嵌入。我们将进一步讨论将嵌入式集成到端到端可训练方法中,即卷积神经网络和递归神经网络。这本小册子的第二章将讨论基于注意力的模型的影响,因为它们是最近大多数最先进的架构的基础。因此,我们也将在本章中花很大一部分时间讨论迁移学习方法在现代自然语言处理中的应用。最后一章将会是一个关于自然语言生成的说明性用例,用于评估最先进的模型的训练前资源和基准任务/数据集。

https://compstat-lmu.github.io/seminar_nlp_ss20/

在过去的几十年里,人工智能技术的重要性和应用不断得到关注。在当今时代,它已经与构成人类塑造环境的大部分环境密不可分。因此,商业、研究和开发、信息服务、工程、社会服务和医学等无数部门已经不可逆转地受到人工智能能力的影响。人工智能有三个主要领域组成了这项技术:语音识别、计算机视觉和自然语言处理(见Yeung (2020))。在这本书中,我们将仔细研究自然语言处理(NLP)的现代方法。

这本小册子详细介绍了用于自然语言处理的现代方法,如深度学习和迁移学习。此外,本研究亦会研究可用于训练自然语言处理任务的资源,并会展示一个将自然语言处理应用于自然语言生成的用例。

为了分析和理解人类语言,自然语言处理程序需要从单词和句子中提取信息。由于神经网络和其他机器学习算法需要数字输入来进行训练,因此应用了使用密集向量表示单词的词嵌入。这些通常是通过有多个隐藏层的神经网络学习的,深度神经网络。为了解决容易的任务,可以应用简单的结构神经网络。为了克服这些简单结构的局限性,采用了递归和卷积神经网络。因此,递归神经网络用于学习不需要预先定义最佳固定维数的序列的模型,卷积神经网络用于句子分类。第二章简要介绍了NLP中的深度学习。第三章将介绍现代自然语言处理的基础和应用。在第四章和第五章中,将解释和讨论递归神经网络和卷积神经网络及其在自然语言处理中的应用。

迁移学习是每个任务或领域的学习模型的替代选择。在这里,可以使用相关任务或领域的现有标记数据来训练模型,并将其应用到感兴趣的任务或领域。这种方法的优点是不需要在目标域中进行长时间的训练,并且可以节省训练模型的时间,同时仍然可以(在很大程度上)获得更好的性能。迁移学习中使用的一个概念是注意力,它使解码器能够注意到整个输入序列,或自注意,它允许一个Transformer 模型处理所有输入单词,并建模一个句子中所有单词之间的关系,这使得快速建模一个句子中的长期依赖性成为可能。迁移学习的概念将在小册子的第6章简要介绍。第七章将通过ELMo、ULMFiT和GPT模型来描述迁移学习和LSTMs。第八章将详细阐述注意力和自注意力的概念。第九章将迁移学习与自注意力相结合,介绍了BERT模型、GTP2模型和XLNet模型。

为NLP建模,需要资源。为了找到任务的最佳模型,可以使用基准测试。为了在基准实验中比较不同的模型,需要诸如精确匹配、Fscore、困惑度或双语评估替补学习或准确性等指标。小册子的第十章简要介绍了自然语言处理的资源及其使用方法。第11章将解释不同的指标,深入了解基准数据集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到资源的预训练模型和数据库,如“带代码的论文”和“大坏的NLP数据库”。

在小册子的最后一章中,介绍了生成性NLP处理自然语言生成,从而在人类语言中生成可理解的文本。因此,不同的算法将被描述,聊天机器人和图像字幕将被展示,以说明应用的可能性。

本文对自然语言处理中各种方法的介绍是接下来讨论的基础。小册子的各个章节将介绍现代的NLP方法,并提供了一个更详细的讨论,以及各种示例的潜力和限制。

成为VIP会员查看完整内容
0
117

数据驱动的发现正在彻底改变复杂系统的建模、预测和控制。这本教科书汇集了机器学习、工程数学和数学物理,将动态系统的建模和控制与现代数据科学方法相结合。它强调了科学计算领域的许多最新进展,使数据驱动的方法能够应用于各种复杂系统,如湍流、大脑、气候、流行病学、金融、机器人和自主。旨在在工程和物理科学的高级本科和开始研究生,文本提出了从介绍到艺术的状态的一系列主题和方法。

主要特点:

  • 深入的工作示例与全面的开源代码

  • 对复杂概念及其应用的简明易懂的解释

  • 广泛的在线补充包括练习,案例研究,课程视频,数据和补充代码

第一部分:降维与变换

尽管测量和计算的分辨率迅速提高,但许多复杂系统在数据中表现出主导的低维模式。模式提取涉及到找到坐标变换,从而简化系统。的确,数学物理的丰富历史是以坐标变换为中心的(例如,谱分解、傅里叶变换、广义函数等),尽管这些技术在很大程度上仅限于简单的理想化几何和线性动力学。获得数据驱动转换的能力为将这些技术推广到具有更复杂几何和边界条件的新研究问题提供了机会。

这本书的这一部分将调查两个最强大和普遍的算法转换和减少数据:奇异值分解(SVD)和傅立叶变换。数据可以在这些转换后的坐标系统中压缩,这一事实使建模和控制的高效传感和紧凑表示成为可能。因此,第三章涉及到利用这种低维结构的稀疏采样方法。

第二部分:机器学习和数据分析

机器学习是基于数据优化技术的。目标是找到一个低秩子空间来最优地嵌入数据,以及回归方法来聚类和分类不同的数据类型。因此,机器学习提供了一套有原则的数学方法,用于从数据中提取有意义的特征,即数据挖掘,以及将数据分成不同的有意义的模式,可以用于决策制定、状态估计和预测。具体来说,它从数据中学习并根据数据做出预测。对于商业应用程序,这通常被称为预测分析,它处于现代数据驱动决策制定的前沿。在一个集成系统中,如自主机器人,各种机器学习组件(例如,处理视觉和触觉刺激)可以被集成,形成我们现在所说的人工智能(AI)。明确地说,人工智能建立在集成的机器学习算法之上,而机器学习算法又从根本上植根于优化。

第三部分:动力学和控制

数据驱动的发现正在彻底改变我们建模、预测和控制复杂系统的方式。现代最紧迫的科学和工程问题是不服从经验模型或基于第一性原理的推导的。研究人员越来越多地转向数据驱动的方法,用于各种复杂系统,如动荡、大脑、气候、流行病学、金融、机器人和自主。这些系统通常是非线性的、动态的、空间和时间的多尺度的、高维的,具有主导的潜在模式,应该为感知、预测、估计和控制的最终目标进行特征化和建模。借助现代数学方法,以及前所未有的可用数据和计算资源,我们现在能够解决以前无法实现的挑战问题。

第四部分:简化订单模型(ROMs)

适当的正交分解(POD)是应用于偏微分方程(PDEs)的SVD算法。因此,它是研究复杂时空系统最重要的降维技术之一。这样的系统典型的例子是非线性偏微分方程,它规定了在给定的物理、工程和/或生物系统中感兴趣的数量在时间和空间上的进化。POD的成功与一个普遍存在的现象有关:在大多数复杂系统中,有意义的行为被编码在动态活动的低维模式中。POD技术试图利用这一事实,以生产能够精确建模控制复杂系统的完整时空演化的低秩动力系统。具体来说,简化阶模型(ROMs)利用POD模式将PDE动力学投影到低阶子空间,在这些子空间中,控制PDE模型的模拟可以更容易地进行评估。重要的是,ROM产生的低秩模型在计算速度方面有了显著的改进,潜在地使昂贵的PDE系统蒙特卡罗模拟、参数化PDE系统的优化和/或基于PDE的系统的实时控制成为可能。

成为VIP会员查看完整内容
0
51

机器学习和人工神经网络无处不在,它们对我们日常生活的影响比我们可能意识到的还要深远。这堂课是专门针对机器学习在不同科学领域的使用的介绍。在科学研究中,我们看到机器学习的应用越来越多,反映了工业技术的发展。这样一来,机器学习就成为了精确科学的通用新工具,与微积分、传统统计学和数值模拟等方法并行其道。这就提出了一个问题,在图2所示的科学工作流程中,这些新方法是最好的。

此外,一旦确定了一项特定的任务,将机器学习应用到科学领域就会面临非常具体的挑战: (i) 科学数据通常具有非常特定的结构,例如晶体图像中近乎完美的周期性; (ii) 通常情况下,我们对应该反映在机器学习分析中的数据相关性有特定的知识; (iii) 我们想要了解为什么一个特定的算法会起作用,寻求对自然机制和法则的基本见解; (iv) 在科学领域,我们习惯于算法和定律提供确定性答案,而机器学习本质上是概率性的——不存在绝对的确定性。尽管如此,定量精度在许多科学领域是至关重要的,因此是机器学习方法的一个关键基准。

这堂课是为科学领域的科学家和学生介绍基本机器学习算法。我们将涵盖:

  • 最基本的机器学习算法,
  • 该领域的术语,简要解释,
  • 监督和无监督学习的原理,以及为什么它是如此成功,
  • 各种人工神经网络的架构和它们适合的问题,
  • 我们如何发现机器学习算法使用什么来解决问题

机器学习领域充满了行话,对于不了解机器学习的人来说,这些行话掩盖了机器学习方法的核心。作为一个不断变化的领域,新的术语正在以快速的速度被引入。我们的目标是通过精确的数学公式和简洁的公式来切入俚语,为那些了解微积分和线性代数的人揭开机器学习概念的神秘面纱。

如上所述,数据是本节课所讨论的大多数机器学习方法的核心。由于原始数据在很多情况下非常复杂和高维,首先更好地理解数据并降低它们的维数往往是至关重要的。下一节,第2节将讨论在转向神经网络的重型机器之前可以使用的简单算法。

我们最关注的机器学习算法,一般可以分为两类算法,即判别算法和生成算法,如图3所示。判别任务的例子包括分类问题,如上述数字分类或分类为固体,液体和气相给出一些实验观测。同样,回归,也就是估计变量之间的关系,也是一个判别问题。更具体地说,我们在给定一些输入数据x的情况下,尝试近似某个变量y (label)的条件概率分布P(y|x)。由于这些任务中的大部分数据都是以输入数据和目标数据的形式提供的,这些算法通常采用监督学习。判别算法最直接地适用于科学,我们将在第3和第4节中讨论它们。

人工智能的前景可能引发科学领域的不合理预期。毕竟,科学知识的产生是最复杂的智力过程之一。计算机算法肯定还远没有达到那样复杂的水平,而且在不久的将来也不会独立地制定新的自然法则。尽管如此,研究人员研究了机器学习如何帮助科学工作流程的各个部分(图2)。虽然制定牛顿经典力学定律所需的抽象类型似乎难以置信地复杂,但神经网络非常擅长隐式知识表示。然而,要准确地理解它们是如何完成某些任务的,并不是一件容易的事情。我们将在第6节讨论这个可解释的问题。

第三类算法被称为强化学习(reinforcement learning),它不完全符合近似统计模型的框架. 机器学习的成功很大程度上与科学家使用适当算法的经验有关。因此,我们强烈建议认真解决伴随练习,并充分利用练习课程。

成为VIP会员查看完整内容
0
36

《通向人工智能之路》向读者介绍了机器学习的关键概念,讨论了机器使用数据产生的预测的潜在应用和局限性,并为学者、律师和政策制定者之间关于如何明智地使用和管理它的辩论提供了信息。技术人员还将从过去120年与问责制、可解释性和有偏见的数据的法律斗争中汲取有用的经验教训。

https://link.springer.com/book/10.1007/978-3-030-43582-0#about

成为VIP会员查看完整内容
0
48

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
128

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
103
小贴士
相关论文
Zsigmond Benkő,Tamás Bábel,Zoltán Somogyvári
0+阅读 · 6月15日
Chunming Tang,Qi Wang,Cunsheng Ding
0+阅读 · 6月15日
Nicholas Krämer,Philipp Hennig
0+阅读 · 6月14日
Valentina Zantedeschi,Matt J. Kusner,Vlad Niculae
0+阅读 · 6月14日
Ahmed Fawzy Gad
0+阅读 · 6月11日
Vít Škvára,Jan Franců,Matěj Zorek,Tomáš Pevný,Václav Šmídl
0+阅读 · 6月8日
Selmer Bringsjord,Naveen Sundar Govindarajulu,Michael Giancola
0+阅读 · 2月5日
Bernhard Schölkopf
9+阅读 · 2019年11月24日
Maria Perez-Ortiz,Peter Tino,Rafal Mantiuk,Cesar Hervas-Martinez
3+阅读 · 2019年3月24日
Duc Tam Nguyen,Zhongyu Lou,Michael Klar,Thomas Brox
6+阅读 · 2019年1月28日
Top