Examining graphs for similarity is a well-known challenge, but one that is mandatory for grouping graphs together. We present a data-driven method to cluster traffic scenes that is self-supervised, i.e. without manual labelling. We leverage the semantic scene graph model to create a generic graph embedding of the traffic scene, which is then mapped to a low-dimensional embedding space using a Siamese network, in which clustering is performed. In the training process of our novel approach, we augment existing traffic scenes in the Cartesian space to generate positive similarity samples. This allows us to overcome the challenge of reconstructing a graph and at the same time obtain a representation to describe the similarity of traffic scenes. We could show, that the resulting clusters possess common semantic characteristics. The approach was evaluated on the INTERACTION dataset.
翻译:相似性检查图是一个众所周知的挑战,但对于将图表组合在一起是必备的挑战。 我们展示了一种由数据驱动的集成交通场景集成方法,这是自我监督的,即不用人工贴标签。 我们利用语义场景图模型来创建交通场景的通用图层嵌入,然后利用一个进行集群的暹罗网络将其绘制到一个低维嵌入空间。 在我们的新方法的培训过程中,我们增加了笛卡尔斯空间的现有交通场景,以产生积极的相似性样本。这使我们能够克服重建图表的挑战,同时获得描述交通场景相似性的代表。我们可以表明,由此形成的组群具有共同的语义特征。在InterACtion数据集上对这种方法进行了评估。