Conditional particle filters (CPFs) with backward/ancestor sampling are powerful methods for sampling from the posterior distribution of the latent states of a dynamic model such as a hidden Markov model. However, the performance of these methods deteriorates with models involving weakly informative observations and/or slowly mixing dynamics. Both of these complications arise when sampling finely time-discretised continuous-time path integral models, but can occur with hidden Markov models too. Multinomial resampling, which is commonly employed with CPFs, resamples excessively for weakly informative observations and thereby introduces extra variance. Furthermore, slowly mixing dynamics render the backward/ancestor sampling steps ineffective, leading to degeneracy issues. We detail two conditional resampling strategies suitable for the weakly informative regime: the so-called `killing' resampling and the systematic resampling with mean partial order. To avoid the degeneracy issues, we introduce a generalisation of the CPF with backward sampling that involves auxiliary `bridging' CPF steps that are parameterised by a blocking sequence. We present practical tuning strategies for choosing an appropriate blocking. Our experiments demonstrate that the CPF with a suitable resampling and the developed `bridge backward sampling' can lead to substantial efficiency gains in the weakly informative regime.
翻译:具有后方/前方取样的有条件粒子过滤器(CPFs)是从动态模型(如隐蔽的马尔科夫模型)潜在状态的后方分布中进行抽样的有力方法,例如隐蔽的马尔科夫模型。然而,这些方法的性能随着涉及信息薄弱的观察和/或缓慢混合动态的模型的模型而恶化。这两种复杂现象都是在微小的时间分解连续路径综合模型中产生的,但也可以与隐蔽的Markov模型发生。多式抽样通常与中央备用伙伴关系一起使用,对信息不足的观测进行过度抽样,从而产生额外的差异。此外,缓慢的混合动态使后方/前方取样步骤无效,导致退化问题。我们详细说明了两种有条件的重新采样战略,这些战略适合于薄弱的信息系统:所谓的“杀菌”重新采样和以中度偏偏偏偏偏偏的偏偏偏偏重重。为了避免退化问题,我们引入了以后向取样为辅助的中央伙伴关系步骤的常规采样。我们提出了实用的调整战略,以便选择适当的后方压式的后方取效率。我们进行了试验,以便选择适当的后方选择适当的后方压式的后方取取制。我们选择了适当的后方的后方的后方取取取取取取取取。