In this paper we consider the filtering of partially observed multi-dimensional diffusion processes that are observed regularly at discrete times. This is a challenging problem which requires the use of advanced numerical schemes based upon time-discretization of the diffusion process and then the application of particle filters. Perhaps the state-of-the-art method for moderate dimensional problems is the multilevel particle filter of \cite{mlpf}. This is a method that combines multilevel Monte Carlo and particle filters. The approach in that article is based intrinsically upon an Euler discretization method. We develop a new particle filter based upon the antithetic truncated Milstein scheme of \cite{ml_anti}. We show that for a class of diffusion problems, for $\epsilon>0$ given, that the cost to produce a mean square error (MSE) in estimation of the filter, of $\mathcal{O}(\epsilon^2)$ is $\mathcal{O}(\epsilon^{-2}\log(\epsilon)^2)$. In the case of multidimensional diffusions with non-constant diffusion coefficient, the method of \cite{mlpf} has a cost of $\mathcal{O}(\epsilon^{-2.5})$ to achieve the same MSE. We support our theory with numerical results in several examples.
翻译:在本文中, 我们考虑对在离散时间经常观察到的部分观测到的多维扩散过程进行过滤。 这是一个具有挑战性的问题, 需要使用基于扩散过程时间分解的高级数字系统, 然后应用粒子过滤器。 也许中度问题的最先进的方法是 \ cite{ mlpf} 的多级粒子过滤器 。 这是将多级 Monte Carlo 和粒子过滤器结合起来的方法 。 文章中的方法本质上以 Euler 离散方法为基础 。 我们开发了一个新的粒子过滤器, 其基础是 抗电磁解的 Milstein 方案 。 对于某类扩散问题, $\ epsilon>0, 给 中度问题最先进的方法是 $\ mathcal { O} (\ epsillon2), 产生一个平均平方差的成本 。 $\\ $\ $( $) (clon) ==cal- cal=2, 我们的数位数级扩散法中, 以不成本 ==xxxx 。