Convolutional graph networks are used in particle physics for effective event reconstructions and classifications. However, their performances can be limited by the considerable amount of sensors used in modern particle detectors if applied to sensor-level data. We present a pooling scheme that uses partitioning to create pooling kernels on graphs, similar to pooling on images. Partition pooling can be used to adopt successful image recognition architectures for graph neural network applications in particle physics. The reduced computational resources allow for deeper networks and more extensive hyperparameter optimizations. To show its applicability, we construct a convolutional graph network with partition pooling that reconstructs simulated interaction vertices for an idealized neutrino detector. The pooling network yields improved performance and is less susceptible to overfitting than a similar network without pooling. The lower resource requirements allow the construction of a deeper network with further improved performance.
翻译:在粒子物理学中使用进化图网络,以便有效地进行事件重建和分类;然而,如果将现代粒子探测器中的大量传感器应用于感官级数据,它们的性能可能受到限制。我们提出了一个集成计划,利用分割法在图形上创建集合内核,类似于图像上的集合。分区图集可用于在粒子物理学中为图形神经网络应用采用成功的图像识别结构。由于计算资源减少,可以建立更深的网络和更广泛的超光谱优化。为了显示其适用性,我们建造了一个带有分区汇集的进化图网络,用于重建理想化中微子探测器的模拟互动脊椎。集成网络可以提高性能,并且比类似的网络更容易在不集中的情况下过度安装。较低的资源要求使得能够建造更深的网络,其性能得到进一步的改进。