Graph Neural Networks (GNNs) are a class of neural networks designed to extract information from the graphical structure of data. Graph Convolutional Networks (GCNs) are a widely used type of GNN for transductive graph learning problems which apply convolution to learn information from graphs. GCN is a challenging algorithm from an architecture perspective due to inherent sparsity, low data reuse, and massive memory capacity requirements. Traditional neural algorithms exploit the high compute capacity of GPUs to achieve high performance for both inference and training. The architectural decision to use a GPU for GCN inference is a question explored in this work. GCN on both CPU and GPU was characterized in order to better understand the implications of graph size, embedding dimension, and sampling on performance.
翻译:图表神经网络(GNNs)是一组神经网络,旨在从数据图形结构中提取信息。图表进化网络(GCNs)是一种广泛使用的GNNs类型,用于转换图形学习问题,这些应用进化来从图表中学习信息。GCN是一种具有挑战性的算法,从建筑角度看,由于固有的宽度、数据再利用率低和大量记忆能力要求,这种算法具有挑战性。传统的神经算法利用GPUs的高计算能力,在推论和培训两方面达到高性能。GCN推论使用GPU的建筑决定是这项工作中探讨的一个问题。关于CPU和GPU的GCN的GCN的特征是为了更好地了解图形大小、嵌入尺寸和对性能的取样的影响。