The success of deep learning is due, to a large extent, to the remarkable effectiveness of gradient-based optimization methods applied to large neural networks. The purpose of this work is to propose a modern view and a general mathematical framework for loss landscapes and efficient optimization in over-parameterized machine learning models and systems of non-linear equations, a setting that includes over-parameterized deep neural networks. Our starting observation is that optimization problems corresponding to such systems are generally not convex, even locally. We argue that instead they satisfy PL$^*$, a variant of the Polyak-Lojasiewicz condition on most (but not all) of the parameter space, which guarantees both the existence of solutions and efficient optimization by (stochastic) gradient descent (SGD/GD). The PL$^*$ condition of these systems is closely related to the condition number of the tangent kernel associated to a non-linear system showing how a PL$^*$-based non-linear theory parallels classical analyses of over-parameterized linear equations. We show that wide neural networks satisfy the PL$^*$ condition, which explains the (S)GD convergence to a global minimum. Finally we propose a relaxation of the PL$^*$ condition applicable to "almost" over-parameterized systems.
翻译:深层学习的成功在很大程度上归功于适用于大型神经网络的基于梯度的优化方法的显著效果,这项工作的目的是提出一种现代观点和一般数学框架,用于损失场景的现代观点和总数学框架,以及超分数机器学习模型和非线性方程式系统的有效优化,这一环境包括过度分数的深神经网络。我们的起始观察是,与这些系统相对应的优化问题一般不是共通的,甚至在当地。我们争辩说,它们满足的是PL$,而PLOIACIEWICZ条件的变式,即参数空间大部分(但并非全部)的PLOLO$(但并非全部)的变式,它既保证存在解决方案的存在,也保证通过(STOCE)梯度下降(SGD/GD)实现高效优化。这些系统的PL$条件与非线性系统相连接的红心内核质质质质质质质质质的质数密切相关,表明以PL$为基非线性理论的理论如何与超分数线性线性方程式的经典分析相近。我们显示宽度网络满足了PL$的最起码的趋同度条件,从而解释了MRDM(SLDM)最后条件。