Software testing assures that code changes do not adversely affect existing functionality. However, a test case can be flaky, i.e., passing and failing across executions, even for the same version of the source code. Flaky test cases introduce overhead to software development as they can lead to unnecessary attempts to debug production or testing code. The state-of-the-art ML-based flaky test case predictors rely on pre-defined sets of features that are either project-specific, require access to production code, which is not always available to software test engineers. Therefore, in this paper, we propose Flakify, a black-box, language model-based predictor for flaky test cases. Flakify relies exclusively on the source code of test cases, thus not requiring to (a) access to production code (black-box), (b) rerun test cases, (c) pre-define features. To this end, we employed CodeBERT, a pre-trained language model, and fine-tuned it to predict flaky test cases using the source code of test cases. We evaluated Flakify on two publicly available datasets (FlakeFlagger and IDoFT) for flaky test cases and compared our technique with the FlakeFlagger approach using two different evaluation procedures: cross-validation and per-project validation. Flakify achieved high F1-scores on both datasets using cross-validation and per-project validation, and surpassed FlakeFlagger by 10 and 18 percentage points in terms of precision and recall, respectively, when evaluated on the FlakeFlagger dataset, thus reducing the cost bound to be wasted on unnecessarily debugging test cases and production code by the same percentages. Flakify also achieved significantly higher prediction results when used to predict test cases on new projects, suggesting better generalizability over FlakeFlagger. Our results further show that a black-box version of FlakeFlagger is not a viable option for predicting flaky test cases.


翻译:软件测试可以确保代码更改不会对现有功能产生不利影响。 但是, 测试的精确度可以是模糊的, 也就是说, 即使是对同一版本的源代码, 即使是对同一版本的源代码, 也可以在执行过程中通过或失败。 亮度测试案例会引入软件开发的间接费用, 因为它们可能导致不必要地尝试调试代码。 以 ML 为基础的最先进的软件测试案例预测器依赖于预先定义的成套功能, 这些功能要么是项目专用的, 需要访问生产代码, 而软件测试工程师并不总是可以使用这种代码。 因此, 在本文中, 我们建议 Flakif 、 黑盒、 语言模型化的预测器, 即使是对发性测试案例的源代码, 也使用源代码的源代码。 使用两个公开的 Flaki 版本, 使用不同的 Flaki 测试程序, 使用不同的 Flaukla 测试案例, 来显示我们之前的版本。 我们使用 DCBER, 一个经过预设的版本的语言模型, 并且通过测试案例的源代码来预测 。 我们用两个公开版本的 Flaki- 测试的版本, 测试程序使用不同的 Flader 和 Fla 测试程序, 显示的版本, 然后 。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员