The ever-increasing size and computational complexity of today's machine-learning algorithms pose an increasing strain on the underlying hardware. In this light, novel and dedicated architectural solutions are required to optimize energy efficiency by leveraging opportunities (such as intrinsic parallelism and robustness to quantization errors) exposed by algorithms. We herein address this challenge by introducing a flexible two-stages computing pipeline. The pipeline can support fine-grained operand quantization through software-supported Single Instruction Multiple Data (SIMD) operations. Moreover, it can efficiently execute sequential multiplications over SIMD sub-words thanks to zero-skipping and Canonical Signed Digit (CSD) coding. Finally, a lightweight repacking unit allows changing the bitwidth of sub-words at run-time dynamically. These features are implemented within a tight energy and area budget. Indeed, experimental results showcase that our approach greatly outperforms traditional hardware SIMD ones both in terms of area and energy requirements. In particular, our pipeline occupies up to 53.1% smaller than a hardware SIMD one supporting the same sub-word widths, while performing multiplication up to 88.8% more efficiently.


翻译:今天机器学习算法的日益扩大的规模和计算复杂性对基础硬件造成越来越大的压力。 如此看来, 需要创新和专门的建筑解决方案来利用算法暴露的机会( 如内在的平行性和对量化错误的稳健性) 来优化能源效率。 我们在此通过采用灵活的双阶段计算管道来应对这一挑战。 管道可以通过软件支持的单一指令多重数据操作来支持细微的拼写量。 此外, 通过零倾斜和Canonical 签名Digit(CSD)编码,它可以有效地执行SIMD子字的顺序倍增。 最后, 轻重的重新包装单元可以动态地改变运行时的小字的微宽度。 这些特征是在紧凑的能源和地区预算范围内实施的。 事实上, 实验结果显示,我们的方法在区域和能源需求方面大大超越了传统的SIMD硬件。 特别是, 我们的管道比SIMD硬件小53.1%, 支持同一小一个小的子字宽度, 并高效地进行倍化到88.8 % 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
20+阅读 · 2018年1月17日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员