In this article, we discuss the numerical solution of diffusion equations on random surfaces within the isogeometric framework. We describe in detail, how diffusion problems on random surfaces can be modelled and how quantities of interest may be derived. In particular, we employ a low rank approximation algorithm for the high-dimensional space-time correlation of the random solution based on an online singular value decomposition, cp. [7]. Extensive numerical studies are performed to validate the approach. In particular, we consider complex computational geometries originating from surface triangulations. The latter can be recast into the isogeometric context by transforming them into quadrangulations using the procedure from [41] and a subsequent approximation by NURBS surfaces.
翻译:在本篇文章中,我们讨论了等离子测量框架内随机表面扩散方程式的数值解决方案,我们详细描述了随机表面扩散问题可如何模拟,以及如何产生大量的兴趣,特别是,我们根据在线单值分解程序,对随机解决方案的高维空间-时间相关性采用了低级近似算法,cp. [7] 进行了广泛的数字研究,以验证这一方法,特别是,我们考虑了来自地表三角的复杂的计算方程,后者可以通过使用[41] 的程序和随后NURBS表面的近似法,将其转换成四面形,从而转换成等相测量环境。