There has been considerable advance in understanding the properties of sparse regularization procedures in high-dimensional models. In time series context, it is mostly restricted to Gaussian autoregressions or mixing sequences. We study oracle properties of LASSO estimation of weakly sparse vector-autoregressive models with heavy tailed, weakly dependent innovations with virtually no assumption on the conditional heteroskedasticity. In contrast to current literature, our innovation process satisfy an $L^1$ mixingale type condition on the centered conditional covariance matrices. This condition covers $L^1$-NED sequences and strong ($\alpha$-) mixing sequences as particular examples.
翻译:在了解高维模型中稀有的正规化程序特性方面,取得了相当大的进展。在时间序列中,它主要局限于高斯自动递减或混合序列。我们研究了阿盟安全组织对稀有的矢量-航空递增模型的估计的异常特性,这些模型具有严重尾随,依赖性弱,几乎完全没有假设有条件的六氯环十二烷。与目前的文献相比,我们的创新过程在核心的有条件共变矩阵中满足了1美元的混合类型条件。这一条件包括1美元NED序列和强力的(alpha$-)混合序列,作为具体例子。