Automata operating on infinite objects feature prominently in the theory of the modal $\mu$-calculus. One such application concerns the tableau games introduced by Niwi\'{n}ski & Walukiewicz, of which the winning condition for infinite plays can be naturally checked by a nondeterministic parity stream automaton. Inspired by work of Jungteerapanich and Stirling we show how determinization constructions of this automaton may be used to directly obtain proof systems for the $\mu$-calculus. More concretely, we introduce a binary tree construction for determinizing nondeterministic parity stream automata. Using this construction we define the annotated cyclic proof system $\mathsf{BT}$, where formulas are annotated by tuples of binary strings. Soundness and Completeness of this system follow almost immediately from the correctness of the determinization method.
翻译:暂无翻译