This paper is concerned with the process of risk allocation for a generic multivariate model when the risk measure is chosen as the Value-at-Risk (VaR). We recast the traditional Euler contributions from an expectation conditional on an event of zero probability to a ratio involving conditional expectations whose conditioning events have strictly positive probability. We derive an analytical form of the proposed representation of VaR contributions for various parametric models. Our numerical experiments show that the estimator using this novel representation outperforms the standard Monte Carlo estimator in terms of bias and variance. Moreover, unlike the existing estimators, the proposed estimator is free from hyperparameters under a parametric setting.
翻译:本文涉及在选择风险计量标准为风险值(VaR)时,通用多变量模型的风险分配过程。我们根据一种零概率事件和有条件预期比率(其中附带条件的事件绝对肯定概率为有条件预期比率)对传统的Euler缴款进行重新设定。我们从各种参数模型的VaR缴款的拟议表述中得出一种分析形式。我们的数字实验表明,使用这种新型代表的估测器在偏差和差异方面超过了Monte Carlo估计标准。此外,与现有的估测器不同,拟议的估测器在参数设置下没有超参数。