Evaluating the quality of facial images is essential for operating face recognition systems with sufficient accuracy. The recent advances in face quality standardisation (ISO/IEC WD 29794-5) recommend the usage of component quality measures for breaking down face quality into its individual factors, hence providing valuable feedback for operators to re-capture low-quality images. In light of recent advances in 3D-aware generative adversarial networks, we propose a novel dataset, "Syn-YawPitch", comprising 1,000 identities with varying yaw-pitch angle combinations. Utilizing this dataset, we demonstrate that pitch angles beyond 30 degrees have a significant impact on the biometric performance of current face recognition systems. Furthermore, we propose a lightweight and efficient pose quality predictor that adheres to the standards of ISO/IEC WD 29794-5 and is freely available for use at https://github.com/datasciencegrimmer/Syn-YawPitch/.
翻译:面部图像的质量评估对于以足够准确的方式运行面部识别系统至关重要。面部质量标准化(ISO/IEC WD 29794-5)的最新进展(ISO/IEC WD 29794-5)建议使用组成部分质量措施,将面部质量分解为个别因素,从而为操作者重新获取低质量图像提供宝贵的反馈。鉴于3D-觉分型对抗性网络的最新进展,我们提议建立一个新型数据集,即“Syn-YawPitch ”,由1,000个身份组成,具有不同的亚氏-皮氏角度组合。利用这一数据集,我们证明在30度以上的倾角对当前面部位识别系统的生物鉴别性能有重大影响。此外,我们提出一个轻量度和高效的质质子预测器,符合ISO/IEC WD 29794-5的标准,可在https://github.com/datascistrigrammer/Syn-YawPitch/免费使用。</s>