Privacy, security and data governance constraints rule out a brute force process in the integration of cross-silo data, which inherits the development of the Internet of Things. Federated learning is proposed to ensure that all parties can collaboratively complete the training task while the data is not out of the local. Vertical federated learning is a specialization of federated learning for distributed features. To preserve privacy, homomorphic encryption is applied to enable encrypted operations without decryption. Nevertheless, together with a robust security guarantee, homomorphic encryption brings extra communication and computation overhead. In this paper, we analyze the current bottlenecks of vertical federated learning under homomorphic encryption comprehensively and numerically. We propose a straggler-resilient and computation-efficient accelerating system that reduces the communication overhead in heterogeneous scenarios by 65.26% at most and reduces the computation overhead caused by homomorphic encryption by 40.66% at most. Our system can improve the robustness and efficiency of the current vertical federated learning framework without loss of security.
翻译:隐私、安全和数据治理方面的限制排除了将跨筒仓数据整合的粗力过程,而跨筒仓数据继承了物联网的发展。 提议采用联邦学习,以确保所有各方能够在数据不来自本地的情况下合作完成培训任务。 垂直联合学习是联邦化学习用于分布特征的专业化学习。 为了维护隐私,采用同质加密,使加密操作无需解密。然而,同质加密加上强有力的安全保障,带来额外的通信和计算间接费用。 在本文中,我们全面、以数字方式分析了在同质加密下纵向联合学习的瓶颈。我们建议采用分层弹性和计算高效的加速系统,将多种情况中的通信间接费用最多减少65.26%,并将同质加密导致的计算间接费用最多减少40.66%。我们的系统可以提高当前纵向联合学习框架的稳健性和效率,同时不丧失安全。