We study a variation of the Stable Marriage problem, where every man and every woman express their preferences as preference lists which may be incomplete and contain ties. This problem is called the Stable Marriage problem with Ties and Incomplete preferences (SMTI). We consider three optimization variants of SMTI, Max Cardinality, Sex-Equal and Egalitarian, and empirically compare the following methods to solve them: Answer Set Programming, Constraint Programming, Integer Linear Programming. For Max Cardinality, we compare these methods with Local Search methods as well. We also empirically compare Answer Set Programming with Propositional Satisfiability, for SMTI instances. This paper is under consideration for acceptance in Theory and Practice of Logic Programming (TPLP).


翻译:我们研究稳定婚姻问题的变异性,即每个男女将自己的偏好作为可能不完整的偏好列表来表达,并包含各种联系。这个问题被称为“带和不完全偏好的稳定婚姻问题 ” ( SMTI ) 。我们考虑了SMTI、Max红衣主教、性别平等与平等等三种优化模式,并用经验比较了以下方法来解决这些问题:答案设置、约束性编程、 Intger线性编程。对于 Max Knightity,我们将这些方法与本地搜索方法进行比较。对于SMTI 的例子,我们也从经验上将“回答设置”方案与“前景可满足性”比较。本文正在考虑在逻辑编程的理论和实践(TPLP)中被接受。

0
下载
关闭预览

相关内容

《逻辑程序设计理论与实践》是一本国际性的期刊,它发表的论著涵盖了逻辑程序设计的理论与实践。逻辑适用于人工智能和计算机科学的所有领域。逻辑编程是这些领域的基础。其中包括使用逻辑编程的人工智能应用程序、逻辑编程方法、系统规范、分析和验证、归纳逻辑编程、多关系数据挖掘、自然语言处理、知识表示、非单调推理、语义web推理、数据库,实现和架构以及约束逻辑编程。 官网链接:https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming
【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
35+阅读 · 2021年4月9日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
62+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员