The stable roommates problem can admit multiple different stable matchings. We have different criteria for deciding which one is optimal, but computing those is often NP-hard. We show that the problem of finding generous or rank-maximal stable matchings in an instance of the roommates problem with incomplete lists is NP-hard even when the preference lists are at most length 3. We show that just maximising the number of first choices or minimising the number of last choices is NP-hard with the short preference lists. We show that the number of $R^{th}$ choices, where $R$ is the minimum-regret of a given instance of SRI, is 2-approximable among all the stable matchings. Additionally, we show that the problem of finding a stable matching that maximises the number of first choices does not admit a constant time approximation algorithm and is W[1]-hard with respect to the number of first choices. We implement integer programming and constraint programming formulations for the optimality criteria of SRI. We find that constraint programming outperforms integer programming and an earlier answer set programming approach by Erdam et. al. (2020) for most optimality criteria. Integer programming outperforms constraint programming and answer set programming on the almost stable roommates problem.
翻译:稳定的室友问题可以接受多种不同的稳定匹配。 我们用不同的标准来决定哪种选择最理想, 但计算往往是NP- 硬的。 我们显示, 在室友问题中找到慷慨或一等最稳定匹配的问题, 与不完全名单不完全的室友问题, 是NP- 硬的问题 。 我们显示, 仅仅将首选数量最大化或将最后选择数量最小化, 与短优惠名单相冲突是硬的。 我们用短优惠名单来显示, 我们用美元来决定哪个选择是最佳的, 但计算往往是最低的。 我们发现, 美元是SRI 最低的, 在所有稳定匹配中, 找到慷慨或一等最稳定的最稳定的匹配的问题。 此外, 我们显示, 找到稳定匹配第一个选择的数量并不接受固定的时间近似近算法, 而对于第一个选择的数量则很难使用W[ 1] 。 我们用最优标准来实施整数的编程和制约性编程公式。 我们发现, 制约性编程优于Erdam etformillest plandal droommental droduction 。 (20) 对最佳编程要求做出最优的回答。