The stable roommates problem can admit multiple different stable matchings. We have different criteria for deciding which one is optimal, but computing those is often NP-hard. We show that the problem of finding generous or rank-maximal stable matchings in an instance of the roommates problem with incomplete lists is NP-hard even when the preference lists are at most length 3. We show that just maximising the number of first choices or minimising the number of last choices is NP-hard with the short preference lists. We show that the number of $R^{th}$ choices, where $R$ is the minimum-regret of a given instance of SRI, is 2-approximable among all the stable matchings. Additionally, we show that the problem of finding a stable matching that maximises the number of first choices does not admit a constant time approximation algorithm and is W[1]-hard with respect to the number of first choices. We implement integer programming and constraint programming formulations for the optimality criteria of SRI. We find that constraint programming outperforms integer programming and an earlier answer set programming approach by Erdam et. al. (2020) for most optimality criteria. Integer programming outperforms constraint programming and answer set programming on the almost stable roommates problem.


翻译:稳定的室友问题可以接受多种不同的稳定匹配。 我们用不同的标准来决定哪种选择最理想, 但计算往往是NP- 硬的。 我们显示, 在室友问题中找到慷慨或一等最稳定匹配的问题, 与不完全名单不完全的室友问题, 是NP- 硬的问题 。 我们显示, 仅仅将首选数量最大化或将最后选择数量最小化, 与短优惠名单相冲突是硬的。 我们用短优惠名单来显示, 我们用美元来决定哪个选择是最佳的, 但计算往往是最低的。 我们发现, 美元是SRI 最低的, 在所有稳定匹配中, 找到慷慨或一等最稳定的最稳定的匹配的问题。 此外, 我们显示, 找到稳定匹配第一个选择的数量并不接受固定的时间近似近算法, 而对于第一个选择的数量则很难使用W[ 1] 。 我们用最优标准来实施整数的编程和制约性编程公式。 我们发现, 制约性编程优于Erdam etformillest plandal droommental droduction 。 (20) 对最佳编程要求做出最优的回答。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月26日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员