The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a \emph{large} improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. Code with our metrics and adaptive margin formulation will be made public.


翻译:图像- 文本匹配任务旨在将不同模式的表达方式映射成共同的视觉- 文字嵌入式。 然而, 最广泛用于此任务的数据集( MSCOCO 和 Flickr30K ) 实际上是图像字幕数据集, 在图像和判决的地面真相说明中提供了非常有限的一组关系。 这种有限的地面真相信息迫使我们使用基于二元相关性的评价指标: 给一个句子查询, 我们认为只有一个图像是相关的。 但是, 数据集中可能存在许多其他相关的图像或说明。 在这项工作中, 我们提出了两个衡量标准, 评估检索到的物品的语义相关性程度, 独立于其附加说明的二元相关性。 此外, 我们纳入了一个新的战略, 使用图像说明性说明性指标( CIDer) 来定义一个基于标准的三重损失的语义调整边距值( SAM ) 。 通过将我们的配方与现有模型相结合, 在现有的培训数据有限的情况下, 也取得了一项改进。 我们还表明, 附加说明性图像描述性图像组合的性能保持完整调整性, 同时将使用其它的校准度设定非标准。

1
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
彭博新书《知识图谱: 一种信息检索视角》,159页pdf
专知会员服务
149+阅读 · 2020年11月1日
【KDD 2020】基于互信息最大化的多知识图谱语义融合
专知会员服务
43+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
用 CNN 分 100,000 类图像
AI研习社
5+阅读 · 2018年3月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年11月7日
VIP会员
Top
微信扫码咨询专知VIP会员