Whereas conventional state-of-the-art image processing systems of recording and output devices almost exclusively utilize square arranged methods, biological models, however, suggest an alternative, evolutionarily-based structure. Inspired by the human visual perception system, hexagonal image processing in the context of machine learning offers a number of key advantages that can benefit both researchers and users alike. The hexagonal deep learning framework Hexnet leveraged in this contribution serves therefore the generation of hexagonal images by utilizing hexagonal deep neural networks (H-DNN). As the results of our created test environment show, the proposed models can surpass current approaches of conventional image generation. While resulting in a reduction of the models' complexity in the form of trainable parameters, they furthermore allow an increase of test rates in comparison to their square counterparts.


翻译:传统最先进的记录和输出装置图像处理系统几乎完全使用平方排列方法,而生物模型则建议了另一种渐进式结构。在人类视觉认知系统的启发下,机器学习背景下的六角图像处理提供了一系列关键优势,既有利于研究人员,也有利于用户。因此,在这一贡献中运用的六角深层学习框架Hexnet(H-DNN)通过利用六角深层神经网络(H-DNN)生成六角图像。正如我们所创造的测试环境所显示的那样,拟议的模型可以超越目前传统的图像生成方法。在降低模型复杂性的同时,还可以降低可培训参数的形式。此外,这些模型还使得测试率与平方相比有所增加。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2018年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员