Whereas conventional state-of-the-art image processing systems of recording and output devices almost exclusively utilize square arranged methods, biological models, however, suggest an alternative, evolutionarily-based structure. Inspired by the human visual perception system, hexagonal image processing in the context of machine learning offers a number of key advantages that can benefit both researchers and users alike. The hexagonal deep learning framework Hexnet leveraged in this contribution serves therefore the generation of hexagonal images by utilizing hexagonal deep neural networks (H-DNN). As the results of our created test environment show, the proposed models can surpass current approaches of conventional image generation. While resulting in a reduction of the models' complexity in the form of trainable parameters, they furthermore allow an increase of test rates in comparison to their square counterparts.
翻译:传统最先进的记录和输出装置图像处理系统几乎完全使用平方排列方法,而生物模型则建议了另一种渐进式结构。在人类视觉认知系统的启发下,机器学习背景下的六角图像处理提供了一系列关键优势,既有利于研究人员,也有利于用户。因此,在这一贡献中运用的六角深层学习框架Hexnet(H-DNN)通过利用六角深层神经网络(H-DNN)生成六角图像。正如我们所创造的测试环境所显示的那样,拟议的模型可以超越目前传统的图像生成方法。在降低模型复杂性的同时,还可以降低可培训参数的形式。此外,这些模型还使得测试率与平方相比有所增加。