Medical diagnosis is the process of making a prediction of the disease a patient is likely to have, given a set of symptoms and observations. This requires extensive expert knowledge, in particular when covering a large variety of diseases. Such knowledge can be coded in a knowledge graph -- encompassing diseases, symptoms, and diagnosis paths. Since both the knowledge itself and its encoding can be incomplete, refining the knowledge graph with additional information helps physicians making better predictions. At the same time, for deployment in a hospital, the diagnosis must be explainable and transparent. In this paper, we present an approach using diagnosis paths in a medical knowledge graph. We show that those graphs can be refined using latent representations with RDF2vec, while the final diagnosis is still made in an explainable way. Using both an intrinsic as well as an expert-based evaluation, we show that the embedding-based prediction approach is beneficial for refining the graph with additional valid conditions.


翻译:医学诊断是预测病人可能患的疾病的过程,如果有一系列症状和观察,这需要广泛的专家知识,特别是在涉及多种疾病时。这种知识可以编成知识图表 -- -- 包括疾病、症状和诊断路径。由于知识本身及其编码都不完整,用更多信息来完善知识图表有助于医生作出更好的预测。与此同时,为了在医院进行诊断,必须解释和透明。在本文中,我们用医学知识图表中的诊断路径来介绍一种方法。我们用RDF2vec的隐形图解析表明,这些图表是可以改进的,而最后的诊断仍然以可以解释的方式进行。我们用内在的和专家的评估来表明,基于嵌入的预测方法有利于用其他有效条件对图表进行精炼。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
3+阅读 · 2022年6月13日
Arxiv
101+阅读 · 2020年3月4日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员