We study the problem of synthesizing implementations from temporal logic specifications that need to work correctly in all environments that can be represented as transducers with a limited number of states. This problem was originally defined and studied by Kupferman, Lustig, Vardi, and Yannakakis. They provide NP and 2-EXPTIME lower and upper bounds (respectively) for the complexity of this problem, in the size of the transducer. We tighten the gap by providing a PSPACE lower bound, thereby showing that algorithms for solving this problem are unlikely to scale to large environment sizes. This result is somewhat unfortunate as solving this problem enables tackling some high-level control problems in which an agent has to infer the environment behavior from observations. To address this observation, we study a modified synthesis problem in which the synthesized controller must gather information about the environment's behavior safely. We show that the problem of determining whether the behavior of such an environment can be safely learned is only co-NP-complete. Furthermore, in such scenarios, the behavior of the environment can be learned using a Turing machine that requires at most polynomial space in the size of the environment's transducer.
翻译:我们研究从时间逻辑规范中综合执行的问题,这些逻辑规范需要在所有环境中正确工作,这些逻辑规范需要在所有环境中以数量有限的国家作为转换器。 这个问题最初由Kupferman、 Lustig、 Vardi 和 Yannakakis 界定和研究。 这个问题最初由 Kupferman、 Lustig、 Vardi 和 Yannakakis 来界定和研究。 它们为这一问题的复杂性提供了NP 和 2- EXPTIME 下层和上界( 分别) 。 我们通过提供低限的 PSPACE 来缩小差距, 从而显示解决这一问题的算法不可能扩大到大环境大小。 这个结果有些不幸, 因为解决这个问题能够解决某些高层控制问题, 使一个代理从观测中推断环境行为。 为了解决这一观察, 我们研究一个经过修改的综合问题, 综合控制器必须安全地收集环境行为的信息。 我们表明, 确定这种环境的行为能否安全地学到的问题只是共同- NPEPEE 。 此外, 在这种假设中, 环境的行为可以学习到在最多元空间大小的环境中需要的图式机器。