A given order type in the plane can be represented by a point set. However, it might be difficult to recognize the orientations of some point triples. Recently, Aichholzer \etal \cite{abh19} introduced exit graphs for visualizing order types in the plane. We present a new class of geometric graphs, called {\em OT-graphs}, using abstract order types and their axioms described in the well-known book by Knuth \cite{k92}. Each OT-graph corresponds to a unique order type. We develop efficient algorithms for recognizing OT-graphs and computing a minimal OT-graph for a given order type in the plane. We provide experimental results on all order types of up to nine points in the plane including a comparative analysis of exit graphs and OT-graphs.
翻译:平面中给定的命令类型可以用一组点表示 。 但是, 可能很难辨别某点三重方向 。 最近, Aichholzer \ contel\ cite{ abh19} 引入了对平面中命令类型进行可视化的退出图 。 我们展示了一种新的几何图形类别, 叫做 ~ em OT- graphs}, 使用抽象的顺序类型和 Knuth\ cite{ k92} 的著名书中所描述的它们的轴。 每个 OT- 绘图都对应一个独特的顺序类型 。 我们开发了有效的算法, 以识别 OT 和计算飞机中某一命令类型的最低 OT 。 我们提供飞机中最多九个点的所有顺序类型的实验结果, 包括对退出图和 OT- graphs 进行比较分析 。