Heterogeneous graphs offer powerful data representations for traffic, given their ability to model the complex interaction effects among a varying number of traffic participants and the underlying road infrastructure. With the recent advent of graph neural networks (GNNs) as the accompanying deep learning framework, the graph structure can be efficiently leveraged for various machine learning applications such as trajectory prediction. As a first of its kind, our proposed Python framework offers an easy-to-use and fully customizable data processing pipeline to extract standardized graph datasets from traffic scenarios. Providing a platform for GNN-based autonomous driving research, it improves comparability between approaches and allows researchers to focus on model implementation instead of dataset curation.
翻译:由于能够模拟不同交通参与者和基本道路基础设施之间的复杂互动效应,不同种类的图表为交通提供了强有力的数据代表。随着最近图表神经网络(GNNs)作为伴随的深层学习框架的出现,图形结构可以有效地用于诸如轨迹预测等各种机器学习应用。作为同类的第一个,我们提议的Python框架提供了一个易于使用和完全可定制的数据处理管道,从交通情景中提取标准化的图表数据集。它为基于GNN的自主驱动研究提供了一个平台,它提高了各种方法之间的可比性,并使研究人员能够侧重于模型实施,而不是数据集整理。