With the advent of brain imaging techniques and machine learning tools, much effort has been devoted to building computational models to capture the encoding of visual information in the human brain. One of the most challenging brain decoding tasks is the accurate reconstruction of the perceived natural images from brain activities measured by functional magnetic resonance imaging (fMRI). In this work, we survey the most recent deep learning methods for natural image reconstruction from fMRI. We examine these methods in terms of architectural design, benchmark datasets, and evaluation metrics and present a fair performance evaluation across standardized evaluation metrics. Finally, we discuss the strengths and limitations of existing studies and present potential future directions.
翻译:随着大脑成像技术和机器学习工具的出现,我们已投入大量精力,建立计算模型,以捕捉人类大脑中视觉信息的编码。最具有挑战性的大脑解码任务之一是精确地重建以功能磁共振成像测量的大脑活动中的自然图像。在这项工作中,我们调查了FMRI的自然图像重建的最新深层学习方法。我们从建筑设计、基准数据集和评价衡量标准的角度来研究这些方法,并提出了对标准化评价指标的公平业绩评价。最后,我们讨论了现有研究的长处和局限性以及目前潜在的未来方向。